
Advanced topics in quantitative genetics

AX101317
http://alenxav.wix.com/home

, and

http://alenxav.wix.com/home

Rationale for advanced topics in quantitative genetics

• Quantitative genetics in plant breeding has been reshaped in the post-genomic era.
The tools and data are different, but the decisions to be taken remain the same:
what to select, what crosses to make, how to maintain or increase genetic gains,
etc.

• Machine learning and data mining are important for handling, and make good use
of, information from novel OMICs and upcoming breeding technologies.

• In addition to that, knowing how to manage multiple traits with variable genetic
architecture is crucial to deal with phenomics.

• With the abundance of data from omics and the computation burden from
machine learning, it is important to get familiarized with big data strategies, which
may come in handy to overcome computational limitations.

1. Machine learning

3

• Rationale

• Overfitting and Complexity-Variance tradeoff

• Parsimony (Occam's razor)

• Hierarchical principle

• ML Methods

• Machine learning is a major component of artificial intelligence (AI). ML is
concerning with capturing specific patterns from data, often with the
purpose of de-noising, classification and predictions for decision making.

• COOL FACT: No machine can be optimally efficient in more than one task.
• The example below postulates that one machine that climb stairs and make pancakes

will be less efficient than two machines exclusively focus on climbing start and
making pancakes, respectively.

Figure source: https://www.youtube.com/watch?v=MPR3o6Hnf2g

Overfitting and Complexity-Variance tradeoff

• More variables will always increase R2

• Overfitting is a good rationale for variable selection

• Goodness-of-fit is usually a poor indicator of quality
• Exception - Some kernel method overfit but yield prediction

• Be suspicious of models that are too good

• Regularized method deal with overfitness
• Example – shrinkage of a BLUP

kNN example of overfitting

https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/ch01.html

L1L2 example of overfitting

𝐛 =
𝐱′𝐲 − 𝛌(𝛂)

𝐱′𝐱 + 𝛌(𝟏 − 𝛂)
=
𝐱′𝐲 − 𝛌𝟏
𝐱′𝐱 + 𝛌𝟐

𝜆 ↑ = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑅2 ↓= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑁𝑃𝑠 ↓= 𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 ↑

↑ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ↓ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =↓ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

variables Overfit BAD!!

Parsimony

• Occam’s razor – A simpler explanation is better than a complex one
• The less terms you have in your model, the better
• An attempt to comprise most information with the least amount of factors

• Example (model for genetic values). Check the two models:
1) Yield = Block + Location + Year + Genotype + (Genotype x Year x Location) + …
2) Yield = Block + Genotype

• NOTE 1 - In model 2), block is already a unique combination of location, year and
experimental set, so it will account for all environmental parameters.

• NOTE 2 – In model 1), higher order terms (eg. G x Y x L) do not contribute to the
estimation of genetic values, rather it capture residuals – it create saturations

Hierarchical principle

• CLAIM: Lower order effects more important than higher order effects

• Effects of same order equally important

(FOR STATERS: POWER IS AN ISSUE TO DETECT SIGNAL OF INTERACTIONS)

• Consider the nature of the variable (continuous or cathegorical)

• This principle makes one wonder about the relevance of Epistasis and GxE

• Higher order terms are good to run out of degrees of freedom

Slide by Daniel Gianola, Valencia Sep. 2010

Machine Learning techniques

• Trees, kernels, neural nets and regression

Machine Learning in
Plant Breeding

Supervised
Learning

Prediction

omic-based
prediction

Yield models

Classification

Market classes,
Heterotic group

Unsupervised
Learning

Clustering

Select target
environments

Germplasm
Structure

Associations

Trade-off
analysis

ML supervised methods

• Parametric
• Regression

• Least square
• Least absolute
• Stepwise regression

• Penalized linear models
• LASSO
• Ridge regression
• Elastic-net and Bridge

• Stochastic methods
• Stochastic search variable selection
• Reversible jump Markov Chain Monte Carlo
• Hierarchical Bayesian methods

• Orthogonal transform
• Principal components regression
• Partial least square (PLS) regression

• Non-parametric
• Tree

• Tree regression
• Random forest (Bagging)
• Boosting

• Kernels
• Support vector regression
• Reproducing Kernel Hilbert Spaces
• Kernel ridge regression
• k Nearest Neighbors

• Neural networks
• Feedforwards
• Recurrent (forward and backward)
• Radial basis function (kernel based)
• Regularized NN

Kernel parametrization
An easy way to get around a large number of markers

https://graphene.limited/services--technologies/physics-
of-triggering/hilbert-measurements-in/index.html

Regressing epistatic terms as ridge

𝑦 = 𝜇 + ∑𝑥𝑖𝛼𝐴 + ∑𝑥𝑖𝑥𝑗𝛼𝐴𝐴 + ∑𝑥𝑖𝑥𝑗𝑥𝑘𝛼𝐴𝐴𝐴 +⋯+ 𝜀

Huge number of parameters!! Below, an example of merely 𝑝 = 50 SNPs

𝐴 = 50, 𝐴𝐴 =
50 ∗ 49

2 ∗ 1
= 1225, 𝐴𝐴𝐴 =

50 ∗ 49 ∗ 48

3 ∗ 2 ∗ 1
= 19600

Regressing epistatic terms as kernels

𝑦 = 𝜇 + uA + uAA + uAAA +⋯+ 𝜀

uA~N 0, KAσAA
2 , KA = MM′𝑐

uAA~N 0, KAAσAA
2 , KAA = MM′ ∘ MM′ 𝑐

uAAA~N 0, KAAAσAAA
2 , KAAA = MM′ ∘ MM′ ∘ MM′ 𝑐

𝑐 = constant to normalize the trace

Ensemble learning (to fix poor learners)

• Bagging (Bootstrapping aggregation)
• Fit the model several times with different subsets of the data

• Combine the models

• Boosting
• Model is refitted continuously reweighting data points

• More weight is given to the ‘outliers’

• Stacking
• Models constructed from bootstrapped data

• Residuals are modeled by the next round of bootstrapped data

Cross-validation
A practical way to assess your pipeline

http://tomaszkacmajor.pl/index.php/2016/05/01/svm-model-selection2/

CV is used to evaluate methodologies

• Criteria
• Correlation: Pearson or Spearman
• % Correct selections
• Mean squared prediction error
• Bias

• Scheme
• K-Fold Cross validation (within a given set)
• Leave-one-out cross validation

• Leave a family out, predict performance of lines from that family
• Leave an environment out, predict performance of lines in that environment

2. Phenomic workflow

22

Number and quality of phenotypes increase

Pipeline complexity (highly computational)

Phenomic data is usually tight to genomics

Analysis of multiple traits

• In linear models: Covariate vs Multivariate
• Covariate – on trait is used to predict the other. No strings attached to genetics.
• Multivariate – modeling 2+ traits simultaneously. Genetic components connect traits

through genetic correlation.

• Computational burden increases exponentially 𝑂 𝑘 7 with the number of traits

• Multicollinearity
• Many traits are nearly identical (eg. neighbor bandwidths from hyperspec image)
• OLS will not work due to singularities

• Modeling is often improved by accounting for time-space domains

Multivariate models

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J.,

Jannink, J. L., & Sorrells, M. E. (2017). Multitrait,

Random Regression, or Simple Repeatability Model in

High-Throughput Phenotyping Data Improve Genomic
Prediction for Wheat Grain Yield. The Plant Genome.

Alternatives to MTM: Structural Equation Models (SEM),
Bayesian Networks (BN), and Markov Random Fields (MRF)

Valente, B. D., Rosa, G. J., de los Campos,

G., Gianola, D., & Silva, M. A. (2010).

Searching for recursive causal structures in

multivariate quantitative genetics mixed

models. Genetics, 185(2), 633-644.

Xavier, A., Hall, B., Casteel, S., Muir, W.,

& Rainey, K. M. (2017). Using

unsupervised learning techniques to

assess interactions among complex traits

in soybeans. Euphytica, 213(8), 200.

Töpner, K., Rosa, G. J., Gianola, D., & Schön, C. C.

(2017). Bayesian Networks Illustrate Genomic and

Residual Trait Connections in Maize (Zea mays
L.). G3: Genes, Genomes, Genetics, 7(8), 2779-2789.

Granier, C., & Vile, D. (2014).

Phenotyping and beyond:

modelling the relationships

between traits. Current opinion

in plant biology, 18, 96-102.

3. Considerations on big data, data
mining and statistical computing

30

Number of observations and paramenters

Reduction of dimensionality via SVD

• Single value decomposition (for rectangular matrices), also
known as spectral decomposition or Eigendecomposition
(for square matrices)

• Backbone of principal component analysis and bi-plot
projections of data. Also widely used to simplify though
calculations and polynomials.

• The information from a matrix is condensed into a set
orthogonal components, where most information is usually
compressed in the first few components

𝐗 = 𝐔𝐃𝐕′

https://intoli.com/blog/pca-and-svd/

http://fourier.eng.hmc.edu/e161/lectures/svdcompression.html

Compiler

• R is a dynamic language, you can program and execute your function
on the fly. But basic function and loops are generally inefficient.
When you compile your code, the function is optimized
(communicate better with the machine)

• Compiling function you wrote: compiler::cmpfun(my_function)

• You can write a package (packages are compiled with GNU compiler)

• Use packages compiled by Microsoft (mran.microsoft.com)
• With Microsoft’s free version of R, everything is much faster

Improvement by using Microsoft’s compilation

Sparsity

• When matrices are not dense (all cell have numbers), they can be stored
more efficiently by not saving the zero elements.

• Sparse storage also makes computation faster since it reduces the
calculation to non-zero elements.

• How to do it: Use R package Matrix to build design matrices. The code
doesn’t really change (except that matrix becomes Matrix).

Sparsity – Dense vs Sparse storage

1 0 0 0 0 1 - - - - X Y Val
0 0 0 0 0 - - - - - 1 1 1
0 0 0 0 0 - - - - - 2 5 3
0 0 0 5 0 - - - 5 - 3 6 1
0 3 0 0 0 - 3 - - - 4 3 5
0 0 1 0 0 - - 1 - - 7 5 1
0 0 0 0 1 - - - - 1

Dense Sparse Stored

Sparsity – Symmetric matrices

Dense Sparse
1 3 4 6 2 5 2 1 - - - - - -
3 1 5 1 3 5 0 3 1 - - - - -
4 5 1 0 3 1 1 4 5 1 - - - -
6 1 0 1 9 8 0 6 1 0 1 - - -
2 3 3 9 1 5 0 2 3 3 9 1 - -
5 5 1 8 5 1 0 5 5 1 8 5 1 -
2 0 1 0 3 8 1 2 0 1 0 3 8 1

Data larger than memory

• When data is larger than your computer can handle, you can load
in memory only what is going to be use

• Hierarchical data format (HDF5) files is a binary designed to
optimize use and storage, compatible with R, Python, Matlab, etc.
• See R package h5

• There ongoing efforts to enable parallel computation of files larger
than memory in R
• See bigmemory project (http://www.bigmemory.org/)
• See R packages ff (for storage) and bigpca

http://www.bigmemory.org/

Parallel computing

• Multithread (CPU) – Perform tasks that are independent in nature:
• Example: Analyses performed on single alleles (GWAS, FST, allele frequency)

• GPU – Very large number of computations with little memory
• Example: Matrix inversion and multiplication, Navier-Strokes, Monte Carlo

• Cloud – Large computation, large memory
• Example: Training neural nets, fit data with large dimensions (p or n)

Monte Carlo methods

• Monte Carlo describes a wide range of sampling and simulation
methods to solve problems that are too complex or do not have
analytical solution

• Case of study: A problem has computational cost that is an
exponential of the number of observations. An example is REML
variance components (EMMA algorithm):

𝑽𝑪 = 𝑶(𝒏𝟑)

• If we solve 10x using 25% of the data, we get:
𝑽𝑪𝑴𝑪 = 𝑶 𝟏𝟎 × 𝒏𝟐𝟓%

𝟑

• If the analysis have 100 individuals
𝑉𝐶 = 1003 = 106

𝑉𝐶𝑀𝐶 = 10 × 253 = 1.56 × 105

• In this case, MC is 6.4x faster than the most efficient VC method

Nick Metropolis

4. Genomic prediction exercise
(R codes included)

42

Getting training and validation datasets

require(SoyNAM)

TRAINING

pop1 = BLUP(fam=3)

VALIDATION

pop2 = BLUP(fam=4)

Matching SNP sets

i = intersect(colnames(pop1$Gen),

colnames(pop2$Gen))

Renaming objects

Y1 = pop1$Phen; X1 = pop1$Gen[,i]

Y2 = pop2$Phen; X2 = pop1$Gen[,i]

POP1 GEN POP2 GEN

POP1 PHE

POP2 PHE
POP2 PHE

PREDICTION

Higher
correlation

is better

Supervised machine learning methods

• Trees and random forest

• Penalized L1L2 linear models

• Neural networks

• Spectral methods: PLS and PC

• Reproducing kernel in Hilbert spaces

• Support vector regressions

• Bayesian learners

• K nearest neighbors

• Bootstrap Aggregation (Bagging)

Regression tree (-0.0220)
require(tree)

FIT USING POP1

fit_tree = tree(y~.,data.frame(y=Y1,X1),)

fit_tree = prune.tree(fit_tree, best = 8)

PREDICT POP2

predict_tree = predict(fit_tree, data.frame(X2))

PLOT

par(mfrow = c(1,2))

plot(predict_tree, Y2);

abline(lm(Y2~predict_tree))

plot(fit_tree); text(fit_tree,cex=0.5)

Random forest (0.2103)
require(ranger)

FIT USING POP1

fit_rf = ranger(y~.,data.frame(y=Y1,X1), importance='impurity')

PREDICT POP2

predict_rf = predict(fit_rf, data.frame(X2))$predictions

PLOT

par(mfrow = c(1,2))

plot(predict_rf, Y2)

abline(lm(Y2~predict_rf))

plot(fit_rf$variable.importance)

LASSO (0.1750)
require(glmnet)

FIT USING POP1

cv_EN = cv.glmnet(y=Y1,x = X1, alpha = 1)

fit_EN = glmnet(y=Y1, x = X1, alpha = 1, lambda = cv_EN$lambda.min)

PREDICT POP2

predict_EN = predict(fit_EN, X2)

PLOT

par(mfrow = c(1,2))

plot(predict_EN, Y2)

abline(lm(Y2~predict_EN))

plot(cv_EN);

Ridge Regression (0.2137)
require(glmnet)

FIT USING POP1

cv_ridge = cv.glmnet(y=Y1,x = X1, alpha = 0)

fit_ridge = glmnet(y=Y1, x = X1, alpha = 0, lambda = cv_ridge$lambda.min)

PREDICT POP2

predict_rigde = predict(fit_ridge, X2)

PLOT

par(mfrow = c(1,2))

plot(predict_rigde, Y2)

abline(lm(Y2~predict_ridge))

plot(cv_ridge);

Elastic-Net (0.2766)
require(glmnet)

FIT USING POP1

cv_EN = cv.glmnet(y=Y1,x = X1, alpha = 0.02)

fit_EN = glmnet(y=Y1, x = X1, alpha = 0.02, lambda = cv_EN$lambda.min)

PREDICT POP2

predict_EN = predict(fit_EN, X2)

PLOT

par(mfrow = c(1,2))

plot(predict_EN, Y2)

abline(lm(Y2~predict_EN))

plot(cv_EN);

Partial Least Square (0.2793)

require(pls)
FIT USING POP1
cv_pls = plsr(y~.,ncolp=5,data=data.frame(y=Y1,X1))
PREDICT POP2
predict_pls = predict(cv_pls, X2)
PLOT
par(mfrow = c(1,3))
plot(predict_pls[,1,1], Y2)
plot(predict_pls[,1,3], Y2)
plot(predict_pls[,1,5], Y2)

0.147 0.301 0.279

Support Vector Regression (0.1104)
require(kernlab)

FIT USING POP1

fit_svr = ksvm(x = X1, y = Y1, type = "eps-svr", scaled = FALSE)

PREDICT POP2

predict_svr = predict(fit_svr, X2)

PLOT

par(mfrow = c(1,1))

plot(predict_svr, Y2)

abline(lm(Y2~predict_svr))

cor(predict_svr, Y2)

MCMC-WGR (0.2682)
require(BGLR)

FIT USING POP1

fit_BC = BGLR(y=Y1, ETA = list(list(X=X1,model='BayesC')))

other models include: BayesA, BayesB, BL, BRR

PREDICT POP2

predict_BC = fit_BC$mu + X2 %*% fit_BC$ETA[[1]]$b

PLOT

par(mfrow = c(1,2))

plot(predict_BC, Y2)

abline(lm(Y2~predict_BC))

plot(fit_BC$ETA[[1]]$b)

EM-WGR (0.2970)
require(bWGR)

FIT USING POP1

fit_EM = emEN(y=Y1, gen = X1)

other models include: emDE, emBL, emBA, emRR

PREDICT POP2

predict_EM = fit_EM$mu + X2 %*% fit_EM$b

PLOT

par(mfrow = c(1,2))

plot(predict_EM, Y2)

abline(lm(Y2~predict_EM))

plot(fit_EM$b)

Bagging-WGR (0.2494)
require(bWGR)

FIT USING POP1

fit_bag = wgr(y=Y1, X = X1, de=T, bag = 0.75)

PREDICT POP2

predict_bag = fit_bag$mu + X2 %*% fit_bag$b

PLOT

par(mfrow = c(1,2))

plot(predict_bag, Y2)

abline(lm(Y2~predict_bag))

plot(fit_bag$b)

RKHS (0.1203)
require(BGLR)

Building the relationship matrix

K = NAM::GAU(rbind(X2,X1))

FIT USING POP1

fit_RKHS = BGLR(y=c(Y1,rep(NA,length(Y2))), ETA = list(list(K=K,model='RKHS')))

PREDICT POP2

predict_RKHS = fit_RKHS$yHat[c(1:length(Y2))]

PLOT

par(mfrow = c(1,1))

plot(predict_RKHS, Y2)

abline(lm(Y2~predict_RKHS))

cor(predict_RKHS, Y2)

Neural Networks (0.1568)
require(nnet)

FIT USING POP1

y = (Y1-mean(Y1))/sd(Y1)

fit_NN = nnet(y=y,x=X1,size=3,

decay=0.001,MaxNWts=Inf,linout=T)

PREDICT POP2

predict_NN = predict(fit_NN,X2)

PLOT

plot(predict_NN, Y2)

abline(lm(Y2~predict_NN))

cor(predict_NN, Y2)

The package brnn (0.2622) fits regularized neural nets, more suitable for GS

Neural Networks (0.2643) with Bagging

require(nnet)

FIT USING POP1 and PREDICT POP2 - 100x

h = rep(0,length(Y2)); nit = 100

for(i in 1:nit){ N=sample(nrow(X1),100);P=sample(ncol(X1),100)

y=(Y1[N]-mean(Y1[N]))/sd(Y1[N])

fit_NN = nnet(y=y,x=X1[N,P],trace=F,size=3,decay=rbeta(1,1,100),linout=T)

h = h + predict(fit_NN,X2[,P])}

predict_NN = h/nit

PLOT

plot(predict_NN, Y2)

abline(lm(Y2~predict_NN))

cor(predict_NN, Y2)

Thanks for your attention

alenxav@gmail.com

http://alenxav.wix.com/home

http://alenxav.wix.com/home
http://alenxav.wix.com/home

