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Rationale for advanced topics in quantitative genetics

* Quantitative genetics in plant breeding has been reshaped in the post-genomic era.
The tools and data are different, but the decisions to be taken remain the same:
what to select, what crosses to make, how to maintain or increase genetic gains,
etc.

* Machine learning and data mining are important for handling, and make good use
of, information from novel OMICs and upcoming breeding technologies.

* |n addition to that, knowing how to manage multiple traits with variable genetic
architecture is crucial to deal with phenomics.

* With the abundance of data from omics and the computation burden from
machine learning, it is important to get familiarized with big data strategies, which
may come in handy to overcome computational limitations.



1. Machine learning




* Rationale

e Overfitting and Complexity-Variance tradeoff
e Parsimony (Occam's razor)

* Hierarchical principle

* ML Methods



* Machine learning is a major component of artificial intelligence (Al). ML is
concerning with capturing specific patterns from data, often with the
purpose of de-noising, classification and predictions for decision making.

* COOL FACT: No machine can be optimally efficient in more than one task.

* The example below postulates that one machine that climb stairs and make pancakes
will be less efficient than two machines exclusively focus on climbing start and
making pancakes, respectively.

Figure source: https://www.youtube.com/watch?v=MPR306HNf2g



Overfitting and Complexity-Variance tradeoft

* More variables will always increase R?
dynamicecology.wordpress.com/2013/08/19/
10 , . .

* Overfitting is a good rationale for variable selection ~*-Calibration

8 »-Validation

* Goodness-of-fit is usually a poor indicator of quality
* Exception - Some kernel method overfit but yield prediction al

RMSE

* Be suspicious of models that are too good
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* Regularized method deal with overfitness
* Example — shrinkage of a BLUP
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https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/ch01.html



Mean-Squared Error
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Parsimony

 Occam’s razor — A simpler explanation is better than a complex one
* The less terms you have in your model, the better
* An attempt to comprise most information with the least amount of factors

* Example (model for genetic values). Check the two models:
1) Yield = Block + Location + Year + Genotype + (Genotype x Year x Location) + ...
2) Yield = Block + Genotype

* NOTE 1 - In model 2), block is already a unique combination of location, year and
experimental set, so it will account for all environmental parameters.

* NOTE 2 — In model 1), higher order terms (eg. G x Y x L) do not contribute to the
estimation of genetic values, rather it capture residuals — it create saturations




Occam's Razor: No more things should be
presumed to exist than are absolutely necessary,
.e., the fewer assumptions an explanation of a
phenomenon depends on, the better the
explanation.

(William of Occam)

izquotes.com




Hierarchical principle

* CLAIM: Lower order effects more important than higher order effects
 Effects of same order equally important

(FOR STATERS: POWER IS AN ISSUE TO DETECT SIGNAL OF INTERACTIONS)

e Consider the nature of the variable (continuous or cathegorical)
* This principle makes one wonder about the relevance of Epistasis and GxE

* Higher order terms are good to run out of degrees of freedom
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Machine Learning in
Plant Breeding
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ML supervised methods

* Parametric * Non-parametric
* Regression * Tree
* Least square * Tree regression
* Least absolute e Random forest (Bagging)
» Stepwise regression * Boosting
* Penalized linear models * Kernels
* LASSO * Support vector regression
* Ridge regression * Reproducing Kernel Hilbert Spaces
* Elastic-net and Bridge * Kernel ridge regression
* Stochastic methods * k Nearest Neighbors
» Stochastic search variable selection * Neural networks
* Reversible jump Markov Chain Monte Carlo * Feedforwards
* Hierarchical Bayesian methods * Recurrent (forward and backward)
* Orthogonal transform * Radial basis function (kernel based)
* Principal components regression * Regularized NN

* Partial least square (PLS) regression



Kernel parametrization

An easy way to get around a large number of markers

https://graphene.limited/services--technologies/physics-
of-triggering/hilbert-measurements-in/index.html



Regressing epistatic terms as ridge

y=HU T inaA + inxjaAA + inxjxkaAAA + .--4 ¢

Huge number of parameters!! Below, an example of merely p = 50 SNPs

50 49 % 48
A = 50, , AAA = = 19600
3x2x%x1




Regressing epistatic terms as kernels

y=,u+uA+uAA+uAAA+---+£
upr~N(0,Kpa03,),  Ka=MM'c
uaa~N(0,Kpp07a),  Kaa = (MM’ o MM')c
Uaaa~N(0,Kaan0ian),  Kaaa = (MM’ e MM’ e MM')c

¢ = constant to normalize the trace



Ensemble learning (to fix poor learners)

* Bagging (Bootstrapping aggregation)
* Fit the model several times with different subsets of the data
e Combine the models

* Boosting

* Model is refitted continuously reweighting data points
* More weight is given to the ‘outliers’

e Stacking

* Models constructed from bootstrapped data
* Residuals are modeled by the next round of bootstrapped data



Cross-validation

A practical way to assess your pipeline
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CV is used to evaluate methodologies

* Criteria
* Correlation: Pearson or Spearman
* % Correct selections

* Mean squared prediction error
* Bias

e Scheme

e K-Fold Cross validation (within a given set)
e Leave-one-out cross validation

* Leave a family out, predict performance of lines from that family
e Leave an environment out, predict performance of lines in that environment



2. Phenomic workflow



Number and guality of phenotypes increase
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Pipeline complexity (highly computational)

Key Figure

Trends in Plant Sdence, February 2016, Vol. 21, No. 2
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Phenomic data is usually tight to genomics

m Trends in Plant Science December 2011, Vol. 16, No. 12

The phenomics wheel of fortune
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Figure 2. Closing the gene to genotype loop with phenomics.



Analysis of multiple traits

* In linear models: Covariate vs Multivariate
* Covariate — on trait is used to predict the other. No strings attached to genetics.

* Multivariate — modeling 2+ traits simultaneously. Genetic components connect traits
through genetic correlation.

« Computational burden increases exponentially O(k)” with the number of traits

* Multicollinearity
* Many traits are nearly identical (eg. neighbor bandwidths from hyperspec image)
e OLS will not work due to singularities

* Modeling is often improved by accounting for time-space domains



Multivariate models

Core Ideas

« HTP platforms used to measure secondary traits
across time

» Longitudinal data of secondary traits evaluated by SR,
MT, and RR models, separately

» BLUPs of secondary traits used in the multivariate
pedigree and genomic prediction

» Grain yield predictive ability was improved by 70%

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J.,
Jannink, J. L., & Sorrells, M. E. (2017). Multitrait,
Random Regression, or Simple Repeatability Model in
High-Throughput Phenotyping Data Improve Genomic
Prediction for Wheat Grain Yield. The Plant Genome.
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Fig. 1. Predictive ability comparison for grain yield between prediction models with secondary traits (MV1 and MV2) and without sec-
ondary trait (UV). MV1, multivariate prediction model with secondary traits in both training and testing populations; MV2, multivariate
prediction model with secondary traits in training population only; UV, univariate prediction model with grain yield only; MT/RR/SR,

multivariate prediction model MV1 or MV2 using best linear unbiased predictions (BLUPs) of secondary traits from multitrait (MT), ran-
dom regression (RR), or simple repeatability (SR) model; G/A, genomic/pedigree relationship matrix.



Alternatives to MTM: Structural Equation Models (SEM),
Bayesian Networks (BN), and Markov Random Fields (MRF)

Coob

Valente, B. D., Rosa, G. J., de los Campos,

G., Gianola, D., & Silva, M. A. (2010).
Searching for recursive causal structures in
multivariate quantitative genetics mixed
models. Genetics, 185(2), 633-644.
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Topner, K., Rosa, G. J., Gianola, D., & Schon, C. C.
(2017). Bayesian Networks lllustrate Genomic and
Residual Trait Connections in Maize (Zea mays

L.). G3: Genes, Genomes, Genetics, 7(8), 2779-2789.
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Granier, C., & Vile, D. (2014).
Phenotyping and beyond:
modelling the relationships
between traits. Current opinion
in plant biology, 18, 96-102.

PHENOTYPIC DATA
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3. Considerations on big data, data
mining and statistical computing



Number of observations and paramenters
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Reduction of dimensionality via SVD

 Single value decomposition (for rectangular matrices), also
known as spectral decomposition or Eigendecomposition

(fOI‘ square matrices) https://intoli.com/1blog/pca-a?nd-svd/
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* Backbone of principal component analysis and bi-plot A | FEEE) =
projections of data. Also widely used to simplify though o .
calculations and polynomials.
: : . : U- : )y | 74
* The information from a matrix is condensed into a set
orthogonal components, where most information is usually nxa nxda dxd_

compressed in the first few components

X =UDV’
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http://fourier.eng.hmc.edu/el161/lectures/svdcompression.html



w

100101011
‘ 0100101
Compiler

Source Code Executable

Compiler

* Ris a dynamic language, you can program and execute your function
on the fly. But basic function and loops are generally inefficient.
When you compile your code, the function is optimized
(communicate better with the machine)

* Compiling function you wrote: compiler::cmpfun( my_function )
* You can write a package (packages are compiled with GNU compiler)

* Use packages compiled by Microsoft ( mran.microsoft.com )
* With Microsoft’s free version of R, everything is much faster




Improvement by using Microsoft’s compilation

Relative Performance
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Principal component analysis -
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I—E Microsoft R Open-3.4.1 (4 threads)
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Sparsity

* When matrices are not dense (all cell have numbers), they can be stored
more efficiently by not saving the zero elements.

» Sparse storage also makes computation faster since it reduces the
calculation to non-zero elements.

* How to do it: Use R package Matrix to build design matrices. The code
doesn’t really change (except that matrix becomes Matrix).




Sparsity — Dense vs Sparse storage
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Sparsity — Symmetric matrices
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Data larger than memory

* When data is larger than your computer can handle, you can load
in memory only what is going to be use

e Hierarchical data format (HDF5) files is a binary designed to

optimize use and storage, compatible with R, Python, Matlab, etc. g
* See R package h5

* There ongoing efforts to enable parallel computation of files larger
than memory in R
* See bigmemory project (http://www.bigmemory.org/)
* See R packages ff (for storage) and bigpca



http://www.bigmemory.org/

Parallel computing

* Multithread (CPU) — Perform tasks that are independent in nature: ?DJ
* Example: Analyses performed on single alleles (GWAS, FST, allele frequency) "=

* GPU — Very large number of computations with little memory
* Example: Matrix inversion and multiplication, Navier-Strokes, Monte Carlo  RVIDIA

* Cloud — Large computation, large memory
* Example: Training neural nets, fit data with large dimensions (p or n) Spark

’ Sca?



Monte Carlo methods

Nick Metropolis

* Monte Carlo describes a wide range of sampling and simulation %

methods to solve problems that are too complex or do not have
analytical solution

e Case of study: A problem has computational cost that is an
exponential of the number of observations. An example is REML
variance components (EMMA algorithm):

VC = 0(n>)

* |f we solve 10x using 25% of the data, we get:
VCMC = 0(10 X (”25%)3 )

* |f the analysis have 100 individuals
VC = 100° = 10°
VCye = 10 X 253 = 1.56 x 10°

* In this case, MC is 6.4x faster than the most efficient VC method



4. Genomic prediction exercise
(R codes included)



Getting training and validation datasets

require(SoyNAM)

POP1 GEN
# TRAINING \
popl = BLUP(fam=3) MJ@@IJ@IJ

POP1 PHE
pop?2 = BLUP(fam=4) "

PREDICTION
@@[ﬂf‘@l]@itﬂ@@

# Renaming objects
Higher

# VALIDATION
# Matching SNP sets
i = intersect( colnames(pop1SGen),

Y1 = poplSPhen; X1 = poplSGen],i] S
Y2 = pop2SPhen; X2 = poplSGenl,i] is better

colnames(pop25Gen) )



Supervised machine learning methods

* Trees and random forest

* Penalized L,L, linear models

* Neural networks

e Spectral methods: PLS and PC

* Reproducing kernel in Hilbert spaces
e Support vector regressions

* Bayesian learners

* K nearest neighbors

* Bootstrap Aggregation (Bagging)



Regression tree (-0.0220)

require(tree)

# FIT USING POP1

fit_tree = tree(y~.,data.frame(y=Y1,X1),)
fit_tree = prune.tree(fit_tree, best = 8)

# PREDICT POP2

predict_tree = predict(fit_tree, data.frame(X2) )
# PLOT

par(mfrow = c(1,2))

plot(predict_tree, Y2);
abline(Im(Y2~predict_tree))

plot(fit_tree); text(fit_tree,cex=0.5) v

predict_tree

pop2$Phen
3700 3800 3900 4000




Random forest (0.2103)

require(ranger)

# FIT USING POP1
fit_rf = ranger(y~.,data.frame(y=Y1,X1), importance='impurity')
# PREDICT POP2

predict_rf = predict(fit_rf, data.frame(X2) )Spredictions

# PLOT

par(mfrow = c(1,2))
plot(predict_rf, Y2)
abline(Im(Y2~predict_rf))

plot(fit_rfSvariable.importance)
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|

fit_rf$variable.importance
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predict_rf Index



LASSO (0.1750)

require(glmnet)

# FIT USING POP1

cv_EN = cv.glmnet(y=Y1,x = X1, alpha = 1)
fit_ EN = glmnet(y=Y1, x = X1, alpha = 1, lambda = cv_ENSlambda.min)
# PREDICT POP2

predict_EN = predict(fit_EN, X2 )
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# PLOT

par(mfrow = c(1,2))
plot(predict_EN, Y2)
abline(Im(Y2~predict_EN)) »
plot(cv_EN); veo 4180 5 1o 1: :2
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Ridge Regression (0.2137)

require(glmnet)

# FIT USING POP1

cv_ridge = cv.glmnet(y=Y1,x = X1, alpha = 0)

fit_ridge = glmnet(y=Y1, x = X1, alpha = 0, lambda = cv_ridgeSlambda.min)
# PREDICT POP2

742 742 T42 742

predict_rigde = predict(fit_ridge, X2 ) — 2 |
# PLOT E S - ;’;?';%;%% :
par(mfrow = c(1,2)) SN <
plot(predict_rigde, Y2) 2 = ggiﬁ ¢ Z 8
abline(Im(Y2~predict_ridge)) gl o g -

plOt(CV ridge); 4155 4165 4175 5 6 7 8 9

predict_rigde log{Lambda)



Elastic-Net (0.2766)

require(glmnet)
# FIT USING POP1

cv_EN = cv.glmnet(y=Y1,x = X1, alpha = 0.02)

fit_ EN = glmnet(y=Y1, x = X1, alpha = 0.02, lambda = cv_ENSlambda.min)

# PREDICT POP2
predict_EN = predict(fit_EN, X2 )
# PLOT

par(mfrow = c(1,2))
plot(predict_EN, Y2)
abline(Im(Y2~predict_EN))
plot(cv_EN);

pop2$Phen
3700 2800 3800 4000

4150 4170 4190

predict EN

Mean-Squared Error
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Partial Least Square (0.2793)

require(pls)
# FIT USING POP1
cv_pls = plsr(y~.,ncolp=5,data=data.frame(y=Y1,X1))

# PREDICT POP2
predict_pls = predict(cv_pls, X2 )
# PLOT

par(mfrow =¢(1,3)) el
plot(predict_pls[,1,1], Y2)
plot(predict_pls[,1,3], Y2) o
plot(predict_pls[,1,5], Y2) e




Support Vector Regression (0.1104)

require(kernlab)

# FIT USING POP1

fit_svr=ksvm(x =X1,y =Y1, type = "eps-svr", scaled = FALSE)
# PREDICT POP2

predict_svr = predict(fit_svr, X2)

# PLOT

par(mfrow = c¢(1,1))

4000

pop2$Phen
3900

plot(predict_svr, Y2)

3800
|
o
=]
%

abline(Im(Y2~predict_svr)) o oo gl

3700
|

cor(predict_svr, Y2) —

4166 4168 4170

predict_swr



MCMC-WGR (0.2682)

require(BGLR)
# FIT USING POP1
fit. BC = BGLR(y=Y1, ETA = list(list(X=X1,model='BayesC')))

# other models include: BayesA, BayesB, BL, BRR
# PREDICT POP2
predict_BC = fit. BCSmu + X2 %*% fit BCSETA[[1]]Sb
# PLOT N = A
par(mfrow = c(1,2)) I
plot(predict_BC, Y2)
abline(Im(Y2~predict_BC))
plot(fit_ BCSETA[[1]]$b)

SETA[[1]]$b
!

fit BC

pop2$Phen
3700 3800 3900 4000
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predict BC Index



EM-WGR (0.2970)

require(bWGR)
# FIT USING POP1
fit, EM = emEN(y=Y1, gen = X1)

# other models include: emDE, emBL, emBA, emRR
# PREDICT POP2
predict_ EM = fit EMSmu + X2 %*% fit_ EMSb
# PLOT
par(mfrow = c(1,2))
plot(predict EM, Y2)
abline(Im(Y2~predict_EM)) o o
plot(fit_EMSb) A e

predict EM Index

|
fit_ EM$b
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Bagging-WGR (0.2494)

require(bWGR)

# FIT USING POP1

fit_bag = wgr(y=Y1, X = X1, de=T, bag = 0.75)
# PREDICT POP2

predict_bag = fit_bagSmu + X2 %*% fit_bagSb

# PLOT

par(mfrow = c(1,2))
plot(predict_bag, Y2)

abline(Im(Y2~predict bag)) Ede . —

pIOt(ﬁt_bag$b) predict_bag Index

04

pop2$Phen
fit_bag$b
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3700 3800 3900 4000
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RKHS (0.1203)

require(BGLR)

# Building the relationship matrix

K = NAM::GAU(rbind(X2,X1))

# FIT USING POP1

fit. RKHS = BGLR(y=c(Y1,rep(NA,length(Y2))), ETA = list(list(K=K,model="RKHS'")))
# PREDICT POP2

predict_RKHS = fit_ RKHSSyHat[c(1:length(Y2))] I

# PLOT R
par(mfrow = c(1,1)) 3 3 @;}@% 3
plot(predict_RKHS, Y2) g . }?? ° .
abline(Im(Y2~predict_RKHS)) R0
cor(predict_RKHS, Y2) 2 - oo °

4165 4170 4175 4180

predict RKHS



Neural Networks (0.1568)

require(nnet)

# FIT USING POP1

vy = (Y1-mean(Y1))/sd(Y1)

fit._ NN = nnet(y=y,x=X1,size=3,
decay=0.001,MaxNW<ts=Inf,linout=T)

# PREDICT POP2

predict_ NN = predict(fit. NN,X2)

# PLOT O

plot(predict_NN, Y2) R

abline(Im(Y2~predict_NN)) R I

cor(predict_NN, Y2)

# The package brnn (0.2622) fits regularized neural nets, more suitable for GS

pop2$Phen
3700 2800 3800 4000

predict NN




Neural Networks (0.2643) with Bagging

require(nnet)

# FIT USING POP1 and PREDICT POP2 - 100x

h = rep(0,length(Y2)); nit = 100

for(i in 1:nit){ N=sample(nrow(X1),100);P=sample(ncol(X1),100)
y=(Y1[N]-mean(Y1[N]))/sd(Y1[N])
fit_ NN = nnet(y=y,x=X1[N,P],trace=F,size=3,decay=rbeta(1,1,100),linout=T)
h = h + predict(fit_NN,X2[,P])}

predict_NN = h/nit

# PLOT

plot(predict NN, Y2)

abline(Im(Y2~predict_NN)) O o

cor(predict_NN, Y2) 10 o5 0o 05 10

predict NN

pop2$Phen
3700 3800 3900 4000




Thanks far Yyour Attention

alenxav@gmail.com
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Tools for sceptical thinking

* Wherever possible there must be independent confirmation of
the 'facts'.

Encourage substantive debate on the evidence by knowledge-
able proponents of all points of view.

Arguments from authority carry little weight - 'authorities'
have made mistakes in the past. They will do so again in the
future. Perhaps a better way to say it 1s that in science there are
no authorities; at most, there are experts.

Spin more than one hypothesis. If there's something to be
explained, think of all the different ways in which it could be
explained. Then think of tests by which you might systemati-
cally disprove each of the alternatives. What survives, the
hypothesis that resists disproof in this Darwinian selection
among 'multiple working hypotheses'. has a much better
chance of being the right answer than 1f you had simply run with
the first 1dea that caught your fancy.*

Try not to get overly attached to a hypothesis just because it's
yours. It's only a way-station in the pursuit of knowledge. Ask
yourself why you like the i1dea. Compare 1t fairly with the
alternatives. See 1f you can find reasons for rejecting it. If you
don't, others will.

Quantify. If whatever it 1s you're explaining has some measure,
some numerical quantity attached to it, you'll be much better
able to discriminate among competing hypotheses. What 1s
vague and qualitative 1s open to many explanations. Of course
there are truths to be sought in the many qualitative issues we
are obliged to confront, but finding them 1s more challenging.
If there's a chain of argument, every link in the chain must work
(including the premise) - not just most of them.

Occam's Razor. This convenient rule-of-thumb urges us when
faced with two hypotheses that explain the data equally well to
choose the simpler.

Always ask whether the hypothesis can be, at least in principle,
falsified. Propositions that are untestable, unfalsifiable are not
worth much. Consider the grand idea that our Universe and
everything in 1t 1s just an elementary particle - an electron, say
- in a much bigger Cosmos. But 1f we can never acquire
information from outside our Universe, 1s not the idea incapa-
ble of disproof? You must be able to check assertions out.
Inveterate sceptics must be given the chance to follow your
reasoning, to duplicate your experiments and see 1if they get the
same result.

Carl Sagan - The Demon Haunted World (p.197)



