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Rationale for advanced topics in quantitative genetics

• Quantitative genetics in plant breeding has been reshaped in the post-genomic era. 
The tools and data are different, but the decisions to be taken remain the same: 
what to select, what crosses to make, how to maintain or increase genetic gains, 
etc.

• Machine learning and data mining are important for handling, and make good use 
of, information from novel OMICs and upcoming breeding technologies.

• In addition to that, knowing how to manage multiple traits with variable genetic 
architecture is crucial to deal with phenomics.

• With the abundance of data from omics and the computation burden from 
machine learning, it is important to get familiarized with big data strategies, which 
may come in handy to overcome computational limitations.



1. Machine learning
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• Rationale

• Overfitting and Complexity-Variance tradeoff

• Parsimony (Occam's razor)

• Hierarchical principle

• ML Methods



• Machine learning is a major component of artificial intelligence (AI).  ML is 
concerning with capturing specific patterns from data, often with the 
purpose of de-noising, classification and predictions for decision making.

• COOL FACT: No machine can be optimally efficient in more than one task. 
• The example below postulates that one machine that climb stairs and make pancakes 

will be less efficient than two machines exclusively focus on climbing start and 
making pancakes, respectively.

Figure source: https://www.youtube.com/watch?v=MPR3o6Hnf2g



Overfitting and Complexity-Variance tradeoff

• More variables will always increase R2

• Overfitting is a good rationale for variable selection

• Goodness-of-fit is usually a poor indicator of quality
• Exception - Some kernel method overfit but yield prediction

• Be suspicious of models that are too good

• Regularized method deal with overfitness
• Example – shrinkage of a BLUP



kNN example of overfitting

https://www.safaribooksonline.com/library/view/deep-learning/9781491924570/ch01.html



L1L2 example of overfitting

𝐛 =
𝐱′𝐲 − 𝛌(𝛂)

𝐱′𝐱 + 𝛌(𝟏 − 𝛂)
=
𝐱′𝐲 − 𝛌𝟏
𝐱′𝐱 + 𝛌𝟐

𝜆 ↑ = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑅2 ↓= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑁𝑃𝑠 ↓= 𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 ↑

↑ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = ↓ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =↓ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

# variables Overfit BAD!!



Parsimony

• Occam’s razor – A simpler explanation is better than a complex one
• The less terms you have in your model, the better
• An attempt to comprise most information with the least amount of factors

• Example (model for genetic values). Check the two models:
1) Yield = Block + Location + Year + Genotype + (Genotype x Year x Location) + …
2) Yield = Block + Genotype

• NOTE 1 - In model 2), block is already a unique combination of location, year and 
experimental set, so it will account for all environmental parameters.

• NOTE 2 – In model 1), higher order terms (eg. G x Y x L) do not contribute to the 
estimation of genetic values, rather it capture residuals – it create saturations





Hierarchical principle

• CLAIM: Lower order effects more important than higher order effects

• Effects of same order equally important

(FOR STATERS: POWER IS AN ISSUE TO DETECT SIGNAL OF INTERACTIONS)

• Consider the nature of the variable (continuous or cathegorical)

• This principle makes one wonder about the relevance of Epistasis and GxE

• Higher order terms are good to run out of degrees of freedom



Slide by Daniel Gianola, Valencia Sep. 2010



Machine Learning techniques

• Trees, kernels, neural nets and regression
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ML supervised methods

• Parametric
• Regression

• Least square
• Least absolute
• Stepwise regression

• Penalized linear models
• LASSO
• Ridge regression
• Elastic-net and Bridge

• Stochastic methods
• Stochastic search variable selection
• Reversible jump Markov Chain Monte Carlo
• Hierarchical Bayesian methods

• Orthogonal transform
• Principal components regression
• Partial least square (PLS) regression

• Non-parametric
• Tree

• Tree regression
• Random forest (Bagging)
• Boosting

• Kernels
• Support vector regression
• Reproducing Kernel Hilbert Spaces
• Kernel ridge regression
• k Nearest Neighbors

• Neural networks
• Feedforwards
• Recurrent (forward and backward)
• Radial basis function (kernel based)
• Regularized NN



Kernel parametrization
An easy way to get around a large number of markers

https://graphene.limited/services--technologies/physics-
of-triggering/hilbert-measurements-in/index.html



Regressing epistatic terms as ridge

𝑦 = 𝜇 + ∑𝑥𝑖𝛼𝐴 + ∑𝑥𝑖𝑥𝑗𝛼𝐴𝐴 + ∑𝑥𝑖𝑥𝑗𝑥𝑘𝛼𝐴𝐴𝐴 +⋯+ 𝜀

Huge number of parameters!! Below, an example of merely 𝑝 = 50 SNPs

𝐴 = 50, 𝐴𝐴 =
50 ∗ 49

2 ∗ 1
= 1225, 𝐴𝐴𝐴 =

50 ∗ 49 ∗ 48

3 ∗ 2 ∗ 1
= 19600



Regressing epistatic terms as kernels

𝑦 = 𝜇 + uA + uAA + uAAA +⋯+ 𝜀

uA~N 0, KAσAA
2 , KA = MM′𝑐

uAA~N 0, KAAσAA
2 , KAA = MM′ ∘ MM′ 𝑐

uAAA~N 0, KAAAσAAA
2 , KAAA = MM′ ∘ MM′ ∘ MM′ 𝑐

𝑐 = constant to normalize the trace



Ensemble learning (to fix poor learners)

• Bagging (Bootstrapping aggregation)
• Fit the model several times with different subsets of the data

• Combine the models

• Boosting
• Model is refitted continuously reweighting data points

• More weight is given to the ‘outliers’

• Stacking
• Models constructed from bootstrapped data

• Residuals are modeled by the next round of bootstrapped data 



Cross-validation
A practical way to assess your pipeline

http://tomaszkacmajor.pl/index.php/2016/05/01/svm-model-selection2/



CV is used to evaluate methodologies

• Criteria
• Correlation: Pearson or Spearman
• % Correct selections
• Mean squared prediction error
• Bias

• Scheme
• K-Fold Cross validation (within a given set)
• Leave-one-out cross validation

• Leave a family out, predict performance of lines from that family
• Leave an environment out, predict performance of lines in that environment



2. Phenomic workflow

22



Number and quality of phenotypes increase



Pipeline complexity (highly computational)



Phenomic data is usually tight to genomics



Analysis of multiple traits

• In linear models: Covariate vs Multivariate
• Covariate – on trait is used to predict the other. No strings attached to genetics.
• Multivariate – modeling 2+ traits simultaneously. Genetic components connect traits 

through genetic correlation.

• Computational burden increases exponentially 𝑂 𝑘 7 with the number of traits

• Multicollinearity
• Many traits are nearly identical (eg. neighbor bandwidths from hyperspec image)
• OLS will not work due to singularities

• Modeling is often improved by accounting for time-space domains



Multivariate models

Sun, J., Rutkoski, J. E., Poland, J. A., Crossa, J., 

Jannink, J. L., & Sorrells, M. E. (2017). Multitrait, 

Random Regression, or Simple Repeatability Model in 

High-Throughput Phenotyping Data Improve Genomic 
Prediction for Wheat Grain Yield. The Plant Genome.



Alternatives to MTM: Structural Equation Models (SEM), 
Bayesian Networks (BN), and Markov Random Fields (MRF)

Valente, B. D., Rosa, G. J., de los Campos, 

G., Gianola, D., & Silva, M. A. (2010). 

Searching for recursive causal structures in 

multivariate quantitative genetics mixed 

models. Genetics, 185(2), 633-644.

Xavier, A., Hall, B., Casteel, S., Muir, W., 

& Rainey, K. M. (2017). Using 

unsupervised learning techniques to 

assess interactions among complex traits 

in soybeans. Euphytica, 213(8), 200.

Töpner, K., Rosa, G. J., Gianola, D., & Schön, C. C. 

(2017). Bayesian Networks Illustrate Genomic and 

Residual Trait Connections in Maize (Zea mays 
L.). G3: Genes, Genomes, Genetics, 7(8), 2779-2789.



Granier, C., & Vile, D. (2014). 

Phenotyping and beyond: 

modelling the relationships 

between traits. Current opinion 

in plant biology, 18, 96-102.



3. Considerations on big data, data 
mining and statistical computing
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Number of observations and paramenters



Reduction of dimensionality via SVD

• Single value decomposition (for rectangular matrices), also 
known as spectral decomposition or Eigendecomposition
(for square matrices)

• Backbone of principal component analysis and bi-plot 
projections of data. Also widely used to simplify though 
calculations and polynomials.

• The information from a matrix is condensed into a set 
orthogonal components, where most information is usually 
compressed in the first few components

𝐗 = 𝐔𝐃𝐕′

https://intoli.com/blog/pca-and-svd/



http://fourier.eng.hmc.edu/e161/lectures/svdcompression.html



Compiler

• R is a dynamic language, you can program and execute your function 
on the fly. But basic function and loops are generally inefficient. 
When you compile your code, the function is optimized 
(communicate better with the machine)

• Compiling function you wrote: compiler::cmpfun( my_function ) 

• You can write a package (packages are compiled with GNU compiler)

• Use packages compiled by Microsoft ( mran.microsoft.com )
• With Microsoft’s free version of R, everything is much faster



Improvement by using Microsoft’s compilation



Sparsity

• When matrices are not dense (all cell have numbers), they can be stored 
more efficiently by not saving the zero elements.

• Sparse storage also makes computation faster since it reduces the 
calculation to non-zero elements.

• How to do it: Use R package Matrix to build design matrices. The code 
doesn’t really change (except that matrix becomes Matrix).



Sparsity – Dense vs Sparse storage

1 0 0 0 0 1 - - - - X Y Val
0 0 0 0 0 - - - - - 1 1 1
0 0 0 0 0 - - - - - 2 5 3
0 0 0 5 0 - - - 5 - 3 6 1
0 3 0 0 0 - 3 - - - 4 3 5
0 0 1 0 0 - - 1 - - 7 5 1
0 0 0 0 1 - - - - 1

Dense Sparse Stored



Sparsity – Symmetric matrices

Dense Sparse
1 3 4 6 2 5 2 1 - - - - - -
3 1 5 1 3 5 0 3 1 - - - - -
4 5 1 0 3 1 1 4 5 1 - - - -
6 1 0 1 9 8 0 6 1 0 1 - - -
2 3 3 9 1 5 0 2 3 3 9 1 - -
5 5 1 8 5 1 0 5 5 1 8 5 1 -
2 0 1 0 3 8 1 2 0 1 0 3 8 1



Data larger than memory

• When data is larger than your computer can handle, you can load 
in memory only what is going to be use

• Hierarchical data format (HDF5) files is a binary designed to 
optimize use and storage, compatible with R, Python, Matlab, etc.
• See R package h5

• There ongoing efforts to enable parallel computation of files larger 
than memory in R
• See bigmemory project (http://www.bigmemory.org/) 
• See R packages ff (for storage) and bigpca

http://www.bigmemory.org/


Parallel computing

• Multithread (CPU) – Perform tasks that are independent in nature:
• Example: Analyses performed on single alleles (GWAS, FST, allele frequency)

• GPU – Very large number of computations with little memory
• Example: Matrix inversion and multiplication, Navier-Strokes, Monte Carlo

• Cloud – Large computation, large memory
• Example: Training neural nets, fit data with large dimensions (p or n)



Monte Carlo methods

• Monte Carlo describes a wide range of sampling and simulation 
methods to solve problems that are too complex or do not have 
analytical solution

• Case of study: A problem has computational cost that is an 
exponential of the number of observations. An example is REML 
variance components (EMMA algorithm):

𝑽𝑪 = 𝑶(𝒏𝟑)

• If we solve 10x using 25% of the data, we get:
𝑽𝑪𝑴𝑪 = 𝑶 𝟏𝟎 × 𝒏𝟐𝟓%

𝟑

• If the analysis have 100 individuals
𝑉𝐶 = 1003 = 106

𝑉𝐶𝑀𝐶 = 10 × 253 = 1.56 × 105

• In this case, MC is 6.4x faster than the most efficient VC method

Nick Metropolis



4. Genomic prediction exercise
(R codes included)
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Getting training and validation datasets

require(SoyNAM)

# TRAINING

pop1 = BLUP(fam=3)

# VALIDATION

pop2 = BLUP(fam=4)

# Matching SNP sets

i = intersect( colnames(pop1$Gen),

colnames(pop2$Gen) )

# Renaming objects

Y1 = pop1$Phen;  X1 = pop1$Gen[,i]

Y2 = pop2$Phen;  X2 = pop1$Gen[,i]

POP1 GEN POP2 GEN

POP1 PHE

POP2 PHE
POP2 PHE 

PREDICTION

Higher 
correlation 

is better



Supervised machine learning methods

• Trees and random forest

• Penalized L1L2 linear models

• Neural networks

• Spectral methods: PLS and PC

• Reproducing kernel in Hilbert spaces

• Support vector regressions

• Bayesian learners

• K nearest neighbors

• Bootstrap Aggregation (Bagging)



Regression tree (-0.0220)
require(tree)

# FIT USING POP1

fit_tree = tree(y~.,data.frame(y=Y1,X1),)

fit_tree = prune.tree(fit_tree, best = 8)

# PREDICT POP2

predict_tree = predict(fit_tree, data.frame(X2) )

# PLOT

par(mfrow = c(1,2))

plot(predict_tree, Y2);

abline(lm(Y2~predict_tree))

plot(fit_tree); text(fit_tree,cex=0.5)



Random forest (0.2103)
require(ranger)

# FIT USING POP1

fit_rf = ranger(y~.,data.frame(y=Y1,X1), importance='impurity')

# PREDICT POP2

predict_rf = predict(fit_rf, data.frame(X2) )$predictions

# PLOT

par(mfrow = c(1,2))

plot(predict_rf, Y2)

abline(lm(Y2~predict_rf))

plot(fit_rf$variable.importance)



LASSO (0.1750)
require(glmnet)

# FIT USING POP1

cv_EN = cv.glmnet(y=Y1,x = X1, alpha = 1)

fit_EN = glmnet(y=Y1, x = X1, alpha = 1, lambda = cv_EN$lambda.min)

# PREDICT POP2

predict_EN = predict(fit_EN, X2 )

# PLOT

par(mfrow = c(1,2))

plot(predict_EN, Y2)

abline(lm(Y2~predict_EN))

plot(cv_EN);



Ridge Regression (0.2137)
require(glmnet)

# FIT USING POP1

cv_ridge = cv.glmnet(y=Y1,x = X1, alpha = 0)

fit_ridge = glmnet(y=Y1, x = X1, alpha = 0, lambda = cv_ridge$lambda.min)

# PREDICT POP2

predict_rigde = predict(fit_ridge, X2 )

# PLOT

par(mfrow = c(1,2))

plot(predict_rigde, Y2)

abline(lm(Y2~predict_ridge))

plot(cv_ridge);



Elastic-Net (0.2766)
require(glmnet)

# FIT USING POP1

cv_EN = cv.glmnet(y=Y1,x = X1, alpha = 0.02)

fit_EN = glmnet(y=Y1, x = X1, alpha = 0.02, lambda = cv_EN$lambda.min)

# PREDICT POP2

predict_EN = predict(fit_EN, X2 )

# PLOT

par(mfrow = c(1,2))

plot(predict_EN, Y2)

abline(lm(Y2~predict_EN))

plot(cv_EN);



Partial Least Square (0.2793)

require(pls)
# FIT USING POP1
cv_pls = plsr(y~.,ncolp=5,data=data.frame(y=Y1,X1))
# PREDICT POP2
predict_pls = predict(cv_pls, X2 )
# PLOT
par(mfrow = c(1,3))
plot(predict_pls[,1,1], Y2)
plot(predict_pls[,1,3], Y2)
plot(predict_pls[,1,5], Y2)

0.147 0.301 0.279



Support Vector Regression (0.1104)
require(kernlab)

# FIT USING POP1

fit_svr = ksvm(x = X1, y = Y1, type = "eps-svr", scaled = FALSE)

# PREDICT POP2

predict_svr = predict(fit_svr, X2)

# PLOT

par(mfrow = c(1,1))

plot(predict_svr, Y2)

abline(lm(Y2~predict_svr))

cor(predict_svr, Y2)



MCMC-WGR (0.2682)
require(BGLR)

# FIT USING POP1

fit_BC = BGLR(y=Y1, ETA = list(list(X=X1,model='BayesC')))

# other models include: BayesA, BayesB, BL, BRR

# PREDICT POP2

predict_BC = fit_BC$mu + X2 %*% fit_BC$ETA[[1]]$b

# PLOT

par(mfrow = c(1,2))

plot(predict_BC, Y2)

abline(lm(Y2~predict_BC))

plot(fit_BC$ETA[[1]]$b)



EM-WGR (0.2970)
require(bWGR)

# FIT USING POP1

fit_EM = emEN(y=Y1, gen =  X1)

# other models include: emDE, emBL, emBA, emRR

# PREDICT POP2

predict_EM = fit_EM$mu + X2 %*% fit_EM$b

# PLOT

par(mfrow = c(1,2))

plot(predict_EM, Y2)

abline(lm(Y2~predict_EM))

plot(fit_EM$b)



Bagging-WGR (0.2494)
require(bWGR)

# FIT USING POP1

fit_bag = wgr(y=Y1, X =  X1, de=T, bag = 0.75)

# PREDICT POP2

predict_bag = fit_bag$mu + X2 %*% fit_bag$b

# PLOT

par(mfrow = c(1,2))

plot(predict_bag, Y2)

abline(lm(Y2~predict_bag))

plot(fit_bag$b)



RKHS (0.1203)
require(BGLR)

# Building the relationship matrix

K = NAM::GAU(rbind(X2,X1))

# FIT USING POP1

fit_RKHS = BGLR(y=c(Y1,rep(NA,length(Y2))), ETA = list(list(K=K,model='RKHS')))

# PREDICT POP2

predict_RKHS = fit_RKHS$yHat[c(1:length(Y2))]

# PLOT

par(mfrow = c(1,1))

plot(predict_RKHS, Y2)

abline(lm(Y2~predict_RKHS))

cor(predict_RKHS, Y2)



Neural Networks (0.1568)
require(nnet)

# FIT USING POP1 

y = (Y1-mean(Y1))/sd(Y1)

fit_NN = nnet(y=y,x=X1,size=3,

decay=0.001,MaxNWts=Inf,linout=T)

# PREDICT POP2

predict_NN = predict(fit_NN,X2)

# PLOT

plot(predict_NN, Y2)

abline(lm(Y2~predict_NN))

cor(predict_NN, Y2)

# The package brnn (0.2622) fits regularized neural nets, more suitable for GS



Neural Networks (0.2643) with Bagging

require(nnet)

# FIT USING POP1 and PREDICT POP2 - 100x

h = rep(0,length(Y2)); nit = 100

for(i in 1:nit){ N=sample(nrow(X1),100);P=sample(ncol(X1),100)

y=(Y1[N]-mean(Y1[N]))/sd(Y1[N])

fit_NN = nnet(y=y,x=X1[N,P],trace=F,size=3,decay=rbeta(1,1,100),linout=T)

h = h + predict(fit_NN,X2[,P])}

predict_NN = h/nit

# PLOT

plot(predict_NN, Y2)

abline(lm(Y2~predict_NN))

cor(predict_NN, Y2)
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